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Abstract

The full-scale linear stability equations for a liquid {ilm flowing down a linearly heated inclined plate are derived {rom the

N-S equations, and the stability characters of both temporal and spatial modes are computed by using Chebyshev spectral collocation

method. The effects of Weber numbers and Marangoni numbers on growth rate, marginal curve, critical Reynolds number, etc. are in-

vestigated. An explicit dispersion relation under long-wave approximation, which is in exact agreement with Miladinova’s one, is obtained

and the limits of long-wave approximation are discussed.
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A liquid film flowing down an inclined plate (the
inclined angle is not small) is susceptible to surface
wave instability. The surface wave instability has
been studied intensively since the early work by
Yih!'! and Benjamin{?). Their linear stability analyses
showed that the flow is stable beyond a cutoff
wavenumber, which means long waves are unstable.
Weakly nonlinear analyses performed by Lin'¥, Gie-
vik'*! and Pumir et al. %! showed that there exist su-
percritical and subcritical instabilities. Recently more
attention is given to falling films on a non-uniformly
heated plate due to flow control and industrial prac-
tice. Kalitzova et al.!®) first conducted the linear
long-wave instability analysis of thin liquid layer on a
linearly heated plate. They showed the Marangoni ef-
fect on the magnitude of the critical Reynolds num-
ber. Miladinova et al.!”) extended the problem to the
finite-amplitude long-wave instabilities of two-dimen-
sional films. Theyv derived a long-wave nonlinear evo-
lution equation based on the Benney’s approach[SJ and
confirmed the existence of permanent finite-amplitude
waves of different kinds. Their linear stability analy-
sis on the evolution equation also showed that the
temperature decreasing along the plate gives an effect
of stabilization on the film flow.

In this paper, our studies on the linear instability
of a falling film along a linearly heated inclined plate
will focus on the full-scale numerical dispersion rela-
tion other than the long-wave approximation due to

its limitation demonstrated by many researchers
(Refs. [9,10]). In Section 1 the full-scale linear sta-
bility equations are derived and then an explicit dis-
persion relation under long-wave approximation are
obtained. The numerical dispersion relations from
full-scale linear stability equations are computed using
Chebyshev spectral collocation method for both tem-
poral and spatial modes (Sections 2 and 3 respective-
ly). The effects of Weber numbers ( We ) and
Marangoni numbers ( Ma ) on growth rate, marginal
curve, critical Reynolds number, etc. are investigat-

ed.
1 Linear stability equations

We consider a thin liquid film with normal thick-
ness d flowing down a linearly heated plate inclined
at an angle 8 to the horizontal under gravitation as
shown in Fig.1. The ambient gas is assumed motion-
less with the constant temperature Ty, and the tem-
perature distribution on the plateis T = Ty + Ax.

Fig. 1.  Thin film flowing down a linearly heated inclined plate.
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Under the coordinates shown in Fig. 1, the dimen-
sionless governing equations of the film flow are writ-

ten as:
u, + v, =0, (1)
Re(u, + uu, + vu,) =2 =2p, + uyp + uy,
(2)
Re(v, + uv, + vv,) == 2c0tf = 2p, + v, + vy,
(3)

Pr - Re(6, + ub, + v8,) = 0,, +0,,. (4)
The boundary conditions on the free surface y =
h(x,t) and the plate y =0 are expressed respectively

as
no-slip condition
u=v=0, y=0, (5)
dynamic condition
X-n=-pon+ Weo(l - Cal)Sn - M V4,
y = h(zx,t), (6)
kinematic condition
h,+uh, —v =0, v=h(z,1), (N
thermal conditon
0=z, y=20, (8)
Vé-n+Bf =0, y=~h(x,1), (9)
where n=( hz’li, = (1’h’)l, S= has 3
(1+r%)2  (1+h2)2 (1+h§)2
u,— p %(uy"'vi)
and X = are the nor-
E(uy""ur) v, — p

mal unit vector, the tangential unit vector, the curva-
ture of the surface and the stress tensor, respectively.
The length, velocity, time and pressure are scaled
with d, Uy = gd’sinf/2v, d/U, and pgdsinf re-
spectively, where v is the kinematic viscosity and p is
the density of the fluid; the temperature difference
T — Ty is scaled with Ad and the dimensionless tem-
perature is denoted by § = (T — To)/Ad. The di-
mensionless parameters that appear in these equations
are the Reynolds number Re = gd>sin8/2v?, the We-
ber number We, = ao/pgdzsin,B, the Capillary num-
ber Ca = YAd /oy, the Biot number Bi = ad/k, the
Marangoni number Ma = YAd?/ px and the Prandtl
number Pr = v/x; where o is the surface tension
with the relation 6 (T) = 6o (Ty) — ¥ (T — Ty),
Y= —do/dT is a positive constant for most common
liquids, « is the thermal diffusivity, %4 is the heat
conductivity and a is the heat-transfer coefficient, re-
spectively. Note that the relations of M = Ma/(2Pr:
Re)= YA/ pgdsinf and Ca = M/ We hold.

The Marangoni and Capillary numbers take posi-

tive or negative values depending on the direction of
the temperature gradient. According to the analysis
and treating of Miladinova et al."!, the Capillary
number is small enough to be ignored and the Weber
number We = Wey(1 — Caf) is assumed constant.

When Bi =0, there exists a basic steady solution
of the film flow:

U(y)=2(1- M)y -2, (10)
P(y)=(1-y)cotf+ py, (11)
3 4
O(z,y)=z+ [(1-M)%—f—2]Pr-Re
—(%—M yPr+Re. (12)

It is easy to find that there does not exist the

ez o) hen Bi #
0, which is thus not considered in this paper. The

normal mode solution like ¢ (y)e

physical significance of Bi =0 is that the film surface
is assumed insulated.

The disturbed flow can be decomposed into « =
U+u', v=v', p=P+p’, h=1+tpand =0+
@’ . Further we introduce the disturbed stream func-

. , o)
tion ¢y, x,t), u =§f, v = —5;@ and assume
that there are the normal mode solutions of the form:

Sb(yv z,t) = f(y)el(krth),

0y, x,t) = g(y)e* (13)
Substituting them into the small disturbed linearized
equations and the corresponding boundary conditions,
we can eliminate the disturbed pressure p’ and free
surface thickness 7; finally we obtain the linear sta-
bility equations:

f7=2k RS

= iRe[ | U - 2| (s~ k2 - U],
(14)

g — kg =ikPr - Re,: U - kﬂ)g - DO - f:'
+ Pr + Ref’ (15)

and linear boundary conditions:
F(0)=0, f£(0)=0, (16)
. 2k . _

£+ k2+kU(1)_w)f(1)+21kMg(1)—O,

(17)

F7(1) = [3k* +iRe(RU(1) — w) 1 (1) — 2ikReMf(1)

12 +13 4
2i(k wt,[za%lk) i\/fw” Weleiy=0,  (18)

g(0)=0, (19)

+
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g (1) = [PreRe(1-2M) = 2it Jyrgs (1) =0.
(20)

So far, for the first time we establish the linear
stability equations for the linearly heated film flowing
down an inclined plate. They are ordinary differential
equations in terms of f, g as a two-point boundary
value problem. If there exists a non-trivial solution
for the equations, a corresponding dispersion relation
D(k,w;Re, We, 3, Pr, Ma) =0 should he satisfied,
and we need to solve an eigenvalue problem. Because
it is impossible to find the explicit analytical disper-
sion relation, the dispersion relation has to be ob-
tained numerically. In our calculations the Chebyshev
collocation method!""? is used, and the QZ algo-
rithm!'?!

eigenvalue problem. In order to check the validation

is utilized to solve the resulting general

of the equations and computational codes, we proceed
twofold as follows: first, our results are in accurate a-
greement compared with those from Refs. [9,10] for
non-heated plate; secondly, the same explicit disper-

171 under the long-wave approximation is

sion relation
derived using expansion of small parameter £ in Egs.
(14)~(20). We set
f=fot+rkfi+, g=got+kgt -,
¢ = cogt kcy +
Substitute them into Egs. (14) ~ (20) to obtain the
k-zero and first order approximation. Finally the dis-

persion relation gives
Ma
PrRe

L“—'Co‘l‘k(‘l:(z— ]+k(‘1,

€1 :*Rgi;{’lg_SRez - %Re - cotf — %szeWe
5] 8\ReMa 1 Ma?
v el P o5 St -5 el e

Because our dimensionless groups defined above differ
from those in Ref. [7], it is easier to convert with
each other and prove that the present dispersion rela-
tion is the same as that in [7].

2 Temporal mode

Fig.2 shows the temporal growth rate computed
from full-scale stability equations (14) ~ (20) versus
different We, Ma and Re. From Fig.2{a) we can
see that the increase in surface tension has stabiliza-
tion effect on the film flow, which makes the maxi-
mum growth rate and the corresponding cutoff
wavenumbers decrease. However, the Weber number
almost has no influence on growth rate as £,—>0. Be-
cause Ma > 0 implies that the plate temperature is

linearly increased, otherwise linearly decreased for
most common liquids 7 >0 from the definition of the
Marangoni number. Fig.2(b) shows that the positive
Marangoni number has destabilization effect, other-
wise stabilization; but the wavenumbers correspond-
ing to the maximum growth rate are hardly changed.
The curves at the right end are already in the stable
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Fig. 2. Temporal growth rate versus wavenumber. (a) Effect of
Weber number (Re =2, 8=145°, Pr=10, Ma =0.2), (b) effect
of Marangoni number (Re =2, We =2, §=45°, Pr=10), (c)
effect of Reynolds number ( We =2, 8 =45, Pr =10, Mu =
0.2).
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range, and the cutoff wavenumber which has been in
the region beyond limit of long wave approximation
has slightly increased as Marangoni number increases.
The effect of viscosity on the film instability can be
seen easily from Fig. 2 (c¢). Below the critical
Reynolds number, the film flow becomes stable.

As mentioned above, the limitation of the long
wave approximation is pointed out by some au-
thors!® %), For example, although there exist abso-
lutely instability regions according to the analysis of
the long wave equation for the isothermal film flow,
in fact, the experimental and the numerical results
from the full-scale dispersion relation show that the
film flow is only convectively unstable. For compari-
son, we draw the temporal growth rate given by full-
scale equations (14) ~ (20) and from the long wave
approximation (21) in Fig. 3. It is seen from Fig. 3
(a) that the long wave approximation is correct only
about k, <. 0. 05, and it cannot predict the critical
wavenumber. Fig. 3 (b) is drawn with the small
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Fig. 3. Temporal growth rate versus wavenumber (When g =
45°, Pr=10, Ma=0.2). (a) Re=2, We=2; (b) Re=1, We
=100. The solid line for long-wave approximation, the dashed line
for full-scale dispersion relation.

Reynolds number and the large Weber number; the
cutoff wavenumber is within the long wave region in
this case, both the curves are closer to each other and
the long wave approximation is suitable.

Fig. 4 shows the effect of Marangoni number on
the marginal stability with different Weber numbers.
Generally the increase in Marangoni number makes
the film flow more unstable. For most instances the
critical Reynolds number occurs at the zero wavenum-
ber. It can be noticed that, however, the critical
Reynolds number can occur in the region of
wavenumber 2 = (0.1~0.2) for small Weber num-
bers and negative Ma numbers, which is beyond the
long wave region. Therefore we should be careful in
determining the critical Reynolds number by the long-
wave equation. In addition, Fig.4 shows that when
the Reynolds number is far away from the critical,
the Marangoni number has only a weak effect on the
marginal wavenumber.
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Fig. 4. The effect of Weber number and Marangoni number on

the marginal curves (=45, Pr=10). (a) We=1, (b) We=
20.
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3 Spatial mode

For convectively unstable film flow, we can fur-
ther study the properties of the spatially amplifying
waves. Considering spatial mode, we set w real num-
ber and £ complex number, &k =k, +1ik;. From Egs.
(14) ~(20), we can obtain the spatially amplifying

—k
wave (~ e 7).
[13

Fig. 5 is such an example.
Gaster' ) has proved that there exists a conversion
relation between the spatial and the temporal growth
rates when they are both small:

w; (T)

Ow,/ Ok,’

where S and T mean the values computed from spa-

- k,(S) =

tial and temporal modes respectively. The results
from the above Gaster’ s transformation are the same
as those obtained from directly numerical computation
of Egs. (14) ~ (20). It is proved again that Egs.
(14) ~(20) and codes are reliable.
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Fig. 5. Spatial growth rate versus the frequency (Re =2, We =
2, 3=45", Pr=10).

4 Conclusion

The linear instability of a liquid film flowing
down a linearly heated inclined plate is investigated in
the present paper. Under assumption of adiabatic free
surface and small Marangoni number the full-scale
linear stability equations with normal mode decompo-
sition are derived from the N-S equations, and an ex-

plicit dispersion relation under the long-wave approxi-
mation, which is in exact agreement with Miladino-
va’s, is yielded. The numerical dispersion relations
from full-scale linear stability equations are computed
using Chebyshev spectral collocation method for both
temporal and spatial modes. The effects of We and
Ma numbers on growth rate, marginal curve, critical
Reynolds number, etc. are considered. We found
that the increase in Marangoni number has destabi-
lization effect on the surface wave instability. Al-
though the long-wave approximation is available at
most situations for thin film flows, the critical
Reynolds number determined by the long-wave ap-
proximation is problematic compared with exact dis-
persion relation in certain parameter regions. Hence,
it must be careful to use long wavenumber approxima-
tion. For the spatial amplifying waves, we obtained
the same conclusions as those of temporal modes.
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